Evaluation of plotless density estimators in different plant density intensities and distribution patterns

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Density using Plotless Density Estimator Criteria in Arasbaran Forest

    Sampling methods have a theoretical basis and should be operational in different forests; therefore selecting an appropriate sampling method is effective for accurate estimation of forest characteristics. The purpose of this study was to estimate the stand density (number per hectare) in Arasbaran forest using a variety of the plotless density estimators of the nearest neighbors sampling me...

متن کامل

Density Estimators for Truncated Dependent Data

In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...

متن کامل

Kernel Density Estimators: Convergence in Distribution for Weighted Sup-norms

Let fn denote a kernel density estimator of a bounded continuous density f in the real line. Let Ψ(t) be a positive continuous function such that ‖Ψf‖∞<∞. Under natural smoothness conditions, necessary and sufficient conditions for the sequence √ nhn 2 log h−1 n supt∈R ∣∣Ψ(t)(fn(t)−Efn(t))∣∣ (properly centered and normalized) to converge in distribution to the double exponential law are obtaine...

متن کامل

Deconvoluting Kernel Density Estimators

This paper considers estimation of a continuous bounded probability density when observations from the density are contaminated by additive measurement errors having a known distribution. Properties of the estimator obtained by deconvolving a kernel estimator of the observed data are investigated. When the kernel used is sufficiently smooth the deconvolved estimator is shown to be pointwise con...

متن کامل

Quantizing Density Estimators

We suggest a nonparametric framework for unsupervised learning of projection models in terms of density estimation on quantized sample spaces. The objective is not to optimally reconstruct the data but instead the quantizer is chosen to optimally reconstruct the density of the data. For the resulting quantizing density estimator (QDE) we present a general method for parameter estimation and mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Global Ecology and Conservation

سال: 2020

ISSN: 2351-9894

DOI: 10.1016/j.gecco.2020.e01114